ATM-dependent phosphorylation of the Fanconi anemia protein PALB2 promotes the DNA Damage Response [DNA and Chromosomes]
September 29th, 2015 by Guo, Y., Feng, W., Sy, S. M. H., Huen, M. S. Y.
The Fanconi anemia protein PALB2, also known as FANCN, protects genome integrity by regulating DNA repair and cell cycle checkpoints. Exactly how PALB2 functions may be temporally coupled with detection and signaling of DNA damage is not known. Intriguingly, we found that PALB2 is transformed into a hyper-phosphorylated state in response to ionizing radiation (IR). IR treatment specifically triggered PALB2 phosphorylation at Ser157 and Ser376 in manners that required the master DNA Damage Response (DDR) kinase Ataxia telangiectasia mutated (ATM), revealing potential mechanistic links between PALB2 and the ATM-dependent DDRs. Consistently, dysregulated PALB2 phosphorylation resulted in sustained activation of DDRs. Full-blown PALB2 phosphorylation also required the breast and ovarian susceptible gene product BRCA1, highlighting important roles of the BRCA1-PALB2 interaction in orchestrating cellular responses to genotoxic stress. In summary, our phosphorylation analysis of tumour suppressor protein PALB2 uncovers new layers of regulatory mechanisms in the maintenance of genome stability and tumor suppression.